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Abstract 
We investigate the problem of estimating the ratio of subjects that share a particular 

characteristic in a population, but some degree of misclassification is possible. The 

misclassification probabilities are considered as the random variables, and we study a 

Bayesian approach to this problem. We propose a method to calculate the exact posterior 

density of the ratio, based on some prior distributions. We, then, study a method to 

determine the sample size, using average coverage criterion. We also investigate the effect 

of different prior distributions on the sample size. 

 

1. Introduction and Preliminaries 

Suppose we investigate the existence of a particular characteristic in a population to 

estimate the ratio of subjects that share it. If the distinguishing method is error free, then 

the well-known sample size formula, based on the normal approximation to the 

binomial distribution, can be used. This gives  

( )θθα −




= 12 2

2/

w
Zn  

where  is the confidence interval width. w

Now, suppose that for classifying the subjects, we have some misclassification 

errors. We may distinguish a subject having the characteristic as a subject that dosen’t 

have that characteristic and vice versa. This problem is common in some researches, for 

example in the estimate of the prevalence of a disease based on some medical tests.  

  Keywords: Average Coverage Criterion; Bayes Estimator; Binomial Distribution; Misclassification; 
Sample Size 
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It should be mentioned that, in each method of classification, two principal criteria, 

sensitivity and specificity, are important. Sensitivity is the probability of distinguishing 

a subject as a positive subject truly. Specificity is the probability of distinguishing a 

subject as a negative subject truly. 

Let  be the actual ratio of the positive subjects and  be the ratio of the positive 

subjects distinguished by the method. If sensitivity and specificity are respectively 

shown as  and we have  

θ p

s ,c

( ) ( csp −−+= 11 θθ )
s c

 .                                                 (1) 

Supposing  and  as fixed constants, Rahme and Joseph [5] conveyed the 

following formula for the adjusted sample size 

( ) ( pp
csw

Znadj −





−+

= 1
1

2
2

2/α ) ,                                       (2) 

where  is calculated in equation (1) based on a value of  In practice, of course,  is 

unknown and therefore the researcher must estimate the value of based on a primary 

sampling or some other information, and then calculate the necessary sample size. 

Equation (2) also demonstrates that both of the sensitivity and specificity have a very 

large influence on sample size. As expected, when  the method is error free, 

 and  equation (2) reduces to the standard binomial sample size formula. 

p .θ

1=

θ

p

,= cs

θ=p

The above problem is specially challenging when the degree to which misclassifi-

cation occurs is not exactly known. So, the problem of determining the sample size for 

estimating the ratio has also been considered from the Bayesian point of view. This 

approach, first, has been studied without considering  misclassification in a series of 

researches such as those of Adcock [1,2] and Gould [3]; and has recently been studied 

by Rahme et al. [6] subject to misclassification. 

In Bayesian approach, the posterior density of  and then the sample 

size are calculated based on some prior distributions of , and c In this respect, 

Joseph et al. [4] used the Gibbs sampling to estimate the posterior density of  

 

θ

,θ s .
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 Recently, Rahme et al. [6] used the Monte Carlo approximation to obtain the 

posterior density of  

.θ

.θ

θ

X

In this paper, we use the Bayesian approach to determine the sample size for 

estimating the ratio, subject to misclassification when the sensitivity and specificity are 

unknown. In this respect, following the investigation of Rahme et al. [6], we calculate  

the exact posterior density of in the second section of this paper. We also show that, 

using the Beta densities as the priors, the posterior density of will be a convex linear 

combination of Beta probability density functions. 

θ

θ

In Section 3 of this paper, using average coverage criterion and symmetric intervals 

around the posterior mean, we will propose a formula for determining the sample size, 

based on the given posterior density in Section 2. Then we will compare the results with 

those of Rahme et al.’s work [6]. 

In Section 4, the influence of the different prior distributions on the sample size will 

be examined, numerically. 

 

2. Bayes Estimator for Ratio when Sensitivity and  

Specificity are Unknown 
In this section, we apply a Bayesian approach to estimate ratio,  when sensitivity 

and specificity are unknown. Considering the prior information about sensitivity, 

specificity, and  we first calculate the posterior density of  and then we obtain a 

Bayes estimator of  under squared error loss function. 

,θ

,θ θ

 Let  be the joint density of   and , and  be the marginal probability 

density function of , where is the number of subjects have been diagnosed as virus 

defected in a sample of size n of a population. Then the posterior function of  will be  

( θ,xf ) X θ ( )xg
X

θ

                          ( ) (
( )

)
xg
xfxf θθ ,=                                               (3) 

where               ( ) ( ) ( ) ,,,,,,
1

0

1

0
dsdccsfcsxlxf θθθ ∫ ∫=  
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( ) ( ) θθ dxfxg ∫=

1

0
,  

and  is the joint prior density function of and  In addition, the likelihood 

function 

( scf ,,θ ) ,,cs .θ

(xθ )cs,,l  is as follows 

( ) ( )( ){ } ( ) ( ){ } xnx cscs
x
n

csxl −−+−−−+





= θθθθθ 1111,, . 

Suppose that  and are independent Beta random variables (Remarks 1 and 2 

below) with parameters as  respectively. Then 

,, sθ c

( ) ( ) (, , , ,s s c candθ θα β α β α β ) ,

)

)

( ) ( )( ){ } ( ) ({ } xnx cscsAxf −−+−−−+= ∫ ∫ θθθθθ 1111,
1

0

1

0
 

( ) ( ) ( ) dsdcccss ccss 111111 111 −−−−−− −−− βαβαβα θθ θθ                 (4) 

where 

( ) ( ) ( ccss BBB
x
n

A
βαβαβα θθ ,,,








= . 

Rahme et al. [6] has estimated the expression (4) using the Monte Carlo approxima-

tion, whereas we propose an exact rule for the posterior density using binomial 

expansion. 

Theorem 1. Considering the above assumptions, the posterior density of is θ

( )
( )

∑∑

∑∑

=

−

=

−−−+−++

=

−

=










 −







−








 −







=
x

k

xn

l

klnkl
x

k

xn

l

BBB
l

xn

k
x

BB
l

xn

k
x

xf

0 0

11

0 0

321

121 θθ βα θθ
θ                (5) 

where 

( )lkBB ss ++= βα ,1 , 

( cc kxlxnBB )βα +−+−−= ,2 ,                                       (6) 

( )klnklBB −−+++= θθ βα ,3 . 

Proof. Using binomial expansion of and  in 

(4),  the following formula is induced 

( )( ){ } xcs −−+ 11 θθ ( ) ( ){ } ,11 xncs −−+− θθ
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Therefore the marginal probability function of  is resulted as follows ( )xg

( ) ( )klnklBZxg
x

k

xn

l
lknx −−+++= ∑∑

=

−

=
θθ βα ,

0 0
,,, .                        (8) 

By substituting the expressions (7) and (8) in formula (3), we will gain (5). 

Remark 1.  In this work, as other similar works, prior information in the form of a Beta 

density will be assumed. This family of distributions was selected since its region of  

positive density from 0 to 1, matches the range of all parameters of interest, and because 

it is a flexible family, in that a wide variety of density shapes can be derived by 

selecting different choices of  andα β . It also has the advantage of being the conjugate 

prior distribution for the binomial likelihood, a property that simplifies the  

 derivation of the posterior distributions. 
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The particular Beta prior density for each test parameter could be selected by 

matching the center of the range with the mean of the Beta distribution, given by 

)/( βαα + ; and matching the standard deviation of the Beta distribution, given by 

)1()( 2 +++ βαβα
αβ  with one-quarter of the total range [4]. 

Remark 2.  It will often be reasonable that   and c  are a priori independent, given 

that the test methodology (e.g. the cut-off values for continuous tests) remains fixed. 

This is because the performance of the test within positive and negative subgroups of 

patients may not be affected by the prevalence of the disease in the population, and prior 

knowledge about the sensitivity and specificity given any fixed cut-off usually is gained 

by independently applying the test to known positive and negative subjects (see also[6]).  

,, sθ

Proposition 1. Regarding the assumptions in Theorem 1, ( ),xf θ  the posterior density 

function of , is a convex linear combination of Beta probability density functions. θ
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i
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that is the posterior density function of  is a convex linear combination of Beta 

probability density functions. 

θ

Proposition 2.  The Bayes estimator of   under squared error loss function is θ
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where                              ( )klnklBB −−++++= θθ βα ,14 .                            (10) 

Proof. It is known that,  Bayes estimator under squared error loss function is equal to 
( ,xE θ )  i.e., the expectation of the posterior density. So, the relation (9) is calculated 

easily. 

Note. Considering θθ βα ,

+ nθ

 as positive integers, the posterior density function of  is a 

polynomial of 

θ

2−+θ βα  order. 

Example1. According to some available information about “the prevalence of a 

particular virus in a population”, the prior distribution of  has been considered for 

 Based on the previous experiences on accuracy and inaccuracy of the test results, for 

a virus diagnostic test, the prior distributions of  and  have, 

respectively, been considered for s and  Suppose that, in a random sample with the 

size of  of the above population, two subjects have been diagnosed as virus 

defected. In this case, using the expressions (6) and (10), we have 

:θ

)

1

( 3,1B

( .0,60

.θ

) )B ( 1.0,30B

.c

6=n

( )lkBB ++= 1.0,601  

( )klBB −−= 1.2,342  

( )klklBB −−++= 9,13  

( )klklBB −−++= 9,24 . 

Therefore, the posterior probability density function of  is calculated as follows θ

( ) ( ) ( ) ( ) 445362 104161.0100091.0100001.0 θθθθθθθ −+−+−=xf  

( ) ( ) ( ) θθθθθθ 72635 144239.1150751.245158637.1 −+−+−+  +  ( )8102264.0 θ−

5678 24.484534.363736.145554.242 θθθθ −+−=  

23.026.104.23644.144282.3625 234 +++−+ θθθθ  
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Furthermore, on the basis of (9), the Bayes estimator of  under squared error loss 

function becomes 

θ

∑∑

∑∑

= =

= =
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θ = 0.29782. 

 

3. Sample Size Determination 

Suppose that in a sample of size n of a population, the number of sample subjects  

distinguished as positive subjects is  Then .x

( ) ( ) 



 +−

2
,ˆ,

2
,ˆ wnxwnx θθ  

is a confidence interval with the width of  for  The coverage probability of this 

interval depends on  and  This gives 

w .θ

x .n

coverage ( ) ( )
( )

( )
θθ

θ

θ
dxfnx

wnx

wnx∫
+

−
= 2

,ˆ

2
,ˆ

, . 

Although  is unknown, its probability function, i.e.,  is available. Therefore, the 

expectation of confidence interval (in other words, average coverage) is initially known 

and calculated as follows 

x ( )xg

∑
=

n

x 0

coverage ( )  ).(, xgnx

Thus, to have a confidence interval with the minimum average coverage of 1  the 

sample size must be chosen in such a way that 

,α−

n

                          ( )
( )

( )
αθθ

θ

θ
−≥∫

=

+

−
1,

0

2
,ˆ

2
,ˆ

dxf
n

x

wnx

wnx
∑ .                              (11) 

The substitution of expression (7) in (11), results in the determination of the smallest 

value of n  so that 
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Example 2. Rahme et al. [6] have considered the following parameters for the prior 

distributions of  and in a numerical example ,, sθ c

( ) ( 14,6, =θθ βα )

)

 

( ) ( 1.0,1.44, =cc βα  

( ) ( 1.6,1.130, =ss )βα . 

Using Monte Carlo approximation, they obtained 348 for the minimum value of so 

that the average coverage confidence interval of width  is at least 0.95. 

,n

1.0=w

But, using the above prior densities, we have calculated 0.95072, 0.95046, 0.95020, 

0.94994 respectively for 348, 347, 346, and 345 as values of  As a result, the 

minimum value of to get the minimum average coverage of 0.95 is equal to 346. 

.n

n

)

 

4. The Influence of Priors on the Sample Size 

For studying the influence of prior distributions on the sample size, we considered 

different Beta distributions as priors for  and determined the related sample size 

when  

cs,,θ

.1.0=w

As a result, we obtained the following tables which indicate when the prior 
distributions of  and change, the sample size essentially changes. ,, sθ c

Note that, in terms of sensitivity and specificity, the cases 1, 2, and 4 are similar, but  

< < . This is not surprising, because V <V <V . In other words, in 

case 2 we have a more precise prior than in case 4, and so in this case we need fewer 

samples than in case 4. The same argument is valid in comparing  case 4 with case 1. 

2n 4n 1n )(2 θ )(4 θ )(1 θ

On the other hand, case 2 and case 3 have the same prior distribution of ,  but  < 

. Since in case 2 we face with a more exact test (in terms of sensitivity and 

specificity) than in case 3. Note that > , > ) , and V <V , 

< V . 

θ

(2

2n

(3 s

3n

2V

)(2 sE ) )(2 cE(3 sE (3 cE )s

)(c )(3 c
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Table 1(a) 

Comparison between sample sizes, based on some different priors 

 
 

 

  case                                                                     s c θ n
     1                          346 ( )1.6,1.130B ( )1.0,1.44B ( 14,6B )
     2                            71 ( )1.6,1.130B ( )1.0,1.44B ( 19,1B )
     3                            101 ( )1.6,1.65B ( )1.0,1.22B ( 19,1B )
     4                            160 ( )1.6,1.130B ( )1.0,1.44B ( 9,1B )

Table 1(b) 
Comparison between sample sizes, in terms of means and variances of  priors 

 case     E( )       V( )          E( c )       V( )           V( )        s s c θ
   1      0.9552   3.1 ×10  0.9977   4.99×10       0.01 4− 5−

   2      0.9552   3.1 ×10  0.9977   4.99×10  2.26×  4− 5− 310−

   3      0.9143   1.1 ×10    0.9950   1.93 10 −  2.26×  3− × 4 310−

   4      0.9552   3.1 ×10  0.9977   4.99×10  8.18×        4− 5− 310−
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